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TL;DR: A neural network approach to solve the differential
equations governing molecular dynamics(MD) systems where the
dynamics are governed by Hamilton’s equations

Experimental Results

The simulation was carried out for 32 atoms in FCC configuration in
time steps of 1 ps

Physics Informed Neural Networks

* The maximum discretization unit in the time integral is dictated by
physical properties of the target system - pressure, temperature,

O - phonon frequency. A bottleneck arises due to the sequential * Gradients computed for 50,000 iterations

VEIVIEW dependency in the time integration to solve the equations of The three energies predicted by PINN match well with the ground
o | , atomic motion. truth MD simulation

* Neural Network(NN) learns by minimizing the least action, function B0 e e

considers the equation of motions, initial and boundary conditions + Too large time renders the numerical solver unstable; drifts in

and provides phase-space trajectories that are in excellent conserved properties 35[ i
agreement with the trajectories obtained by the numerical solution - OO OO~ O=O-O~ -~~~ OO0~ 0=~ 0~0- 0~~~
approach | |
PP . . _ . * One way to overcome the limitation in discretization is to solve 2 401 ;
* An Object-Oriented software package allowing users flexible partial differential equations using neural network with a point in £ - 0~0-0-0-0~0~0-0-0-0~0~0-0-0-0~0-0-0-0-0~0-0-0-0-0
interaction with MD engine and NN utilities written in C++ time t as an input to the network = —45[ :
= |
* Code available at https://github.com/USCCACS/PND 7
* General form of solution when using NN: A, 501 o MDE,
Z(t) = z(0) + N(t) [ MD Epy
. . O MDE,, -
55| <
Re ‘ qte d WO r k Where, N(t) is feed forward fully connected neural network and | — wr
Z(0) is initial state at t=0 ; PND Epoi -
* Highly scalable software packages such as RXMD simplifies the need 600 . . L DB
for time-accelerated algorithms for atom trajectories by the use + Generalizing MSE/Loss function: 0.00 0.05 0.10 0.15 0.20 0.25
with the application of neural networks as an alternative to 1 ' Time
numerical solver for ODEs. L==Y%_C(n)—].A,H(2))? . .
K Two selected NN (blue) and MD (red) trajectories show that PINN

* Physics-informed neural networks (PINNs) have been successful in
applying automatic-differentiation to solve many DEs including heat

equation [1], Burger equation[2], Navier Stoke’s equation [3], * Defining Onsager IVIacTthp [OM) Action te;ﬂ;(i)) 2
Schrodinger equation [4], Hamilton’s equations of motions [5] and Som = [le.\’zo | mty () + H ]dt : —

can reproduce non-trivial paths

general applications [6] [7] [8]
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Where, m;is mass of it" particle; t;(t) is second-order time
derivative (i.e., acceleration) of it" particle; R(t) is Coordinates of all
the particles in the system at time t and U(r"N) is the potential

P 10 b | eIm S ettin g energy of the system
 Atoms in a system are at co-ordinates vV = (14, 15,..7y) with , ,
potential energy U(r") the atomic moment p" = (p1, p,,..PN) * Loss= A1 Som + 12 (Q(0) — QP) + 23 (Q gT) — Q)"+ @) TN e (b)
can be written in terms of kinetic energy as M- E(Q(D),Q(1) ) — Ey] N

K®"Y) = Xi=1Ipli/2m

* The energy or the Hamiltonian H =K + U LJ potential Refe FENCES
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