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• Neural Network(NN) learns by minimizing the least action, function 
considers the equation of motions, initial and boundary conditions 
and provides phase-space trajectories that are in excellent 
agreement with the trajectories obtained by the numerical solution 
approach
• An Object-Oriented software package allowing users flexible 

interaction with MD engine and NN utilities written in C++
• Code available at https://github.com/USCCACS/PND 

Related Work
• Highly scalable software packages such as RXMD simplifies the need 

for time-accelerated algorithms for atom trajectories by the use 
with the application of neural networks as an alternative to 
numerical solver for ODEs.
• Physics-informed neural networks (PINNs) have been successful in 

applying automatic-differentiation to solve many DEs including heat 
equation [1], Burger equation[2], Navier Stoke’s equation [3],  
Schrodinger equation [4], Hamilton’s equations of motions [5] and 
general applications [6] [7] [8] 

Problem Setting
• Atoms in a system are at co-ordinates 𝑟! = 𝑟", 𝑟#, . . 𝑟! with 

potential energy 𝒰 𝑟! the atomic moment 𝑝! = 𝑝", 𝑝#, . . 𝑝!
can be written in terms of kinetic energy as 

𝒦 𝑝! = ∑$%"! |𝑝|$#/2𝑚$

• The energy or the Hamiltonian ℋ = 𝒦 + 𝒰

• The equations of motion are ̇𝑟$ = 𝑝$/𝑚$ & ̇𝑝$ = 𝑓$

• Canonical/ Hamilton’s equations ̇𝑟$ =
&ℋ
&(!

& ̇𝑝$ = − &ℋ
&)!

• For the purpose of expressing the Hamilton’s equations in 
symplectic notation we assume the variable, 𝑧 represent the 
collection of space and momenta co-ordinates
𝑧 = (𝑟", 𝑟#, . . 𝑟! , 𝑝", 𝑝#, . . 𝑝!)*

• J = 0 1
−1 0

• 𝑧̇ = J. ∆+ℋ(𝑧)

Physics Informed Neural Networks
• The maximum discretization unit in the time integral is dictated by 

physical properties of the target system - pressure, temperature, 
phonon frequency. A bottleneck arises due to the sequential 
dependency in the time integration to solve the equations of 
atomic motion. 

• Too large time renders the numerical solver unstable; drifts in 
conserved properties

• One way to overcome the limitation in discretization is to solve 
partial differential equations using neural network with a point in 
time t as an input to the network

• General form of solution when using NN:
𝑧̂(t) = z(0) + N(t)
Where, N(t) is feed forward fully connected neural network and 
Z(0) is initial state at t=0

• Generalizing MSE/Loss function: 

𝐿 =
1
𝐾∑,%"

- 𝑧̂(n) − J. ∆+ℋ(𝑧) #

• Defining  Onsager Machlup (OM) Action term as 

𝑆./ = ∫0
* ∑$%0! 𝑚$ r̈𝒊(𝑡) +

&𝒰 3(5)
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Where, mi is mass of ith particle; r̈𝒊(𝑡) is second-order time 
derivative (i.e., acceleration) of ith particle; R(𝑡) is Coordinates of all 
the particles in the system at time t and 𝒰 𝑟! is the potential 
energy of the system 

• Loss	= 𝜆" 𝑆./ + 𝜆# 𝑄 0 − 𝑄0 # + 𝜆8 𝑄 𝑇 − 𝑄* # + 
𝜆9∑5%0* 𝐸 𝑄(𝑡), 𝑄̇(𝑡) − 𝐸0

#

𝐸 𝑄(𝑡), 𝑄̇(𝑡) is the total energy with 𝜀 and 𝜎 as parameters of the 
LJ potential 

Experimental Results

Overview

TL;DR: A neural network approach to solve the differential 
equations governing molecular dynamics(MD) systems where the 
dynamics are governed by Hamilton’s equations
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Two selected NN (blue) and MD (red) trajectories show that PINN 
can reproduce non-trivial paths

The simulation was carried out for 32 atoms in FCC configuration in 
time steps of 1 ps
• Gradients computed for 50,000 iterations
The three energies predicted by PINN match well with the ground 
truth MD simulation 


